Carbon-Ukraine - Equipment Manufacturing

 

 
  • About Us

    activated carbon, nanoporous carbon, carbide-derived carbonCarbon-Ukraine ltd. serves diverse customers across a variety of industries including the filtration, energy, defense, pharmaceutical, and biomedical sectors. Our mission is the development, production and supply of MAX phases, two dimensional nanomaterials MXenes, porous and activated carbon materials, materials characterization, as well as design and manufacturing of equipment for MXene synthesis and nanostructured carbon production. Our consultative process leads to custom materials tailored to each customer's precise needs.

    We are located in Kiev, Ukraine, and represented in the USA by MedTech Diamond LLC. Our staff includes engineers trained in nanotechnology, organic and inorganic chemistry, electrochemistry, materials science and metallurgy. Carbon-Ukraine ltd. has gained wide recognition for its innovative processes and products.

    Whether you're creating new products or want to upgrade existing ones, we welcome your inquiries. Our controllable process allows us to rapidly optimize a material for your specific needs, and our engineering and sales team is always available to answer your questions. We encourage you to learn more about the exciting possibilities we offer you, and we look forward to partnering with you to improve your product's performance.

    Our Kiev area research and manufacturing center is fully capable of developing and producing porous carbon materials and MXenes tailored to meet your needs.

    Carbon-Ukraine also provides experimental synthesis of different materials for research needs, including MAX phases Ti3AlC2, Ti2AlC, V2AlC and others, MXenes Ti2C, Ti3C2, V2C and others.

    To get a quota with a price on MXene, MAX phase or CDC please contact us at This email address is being protected from spambots. You need JavaScript enabled to view it.   

     
     
     
  • Etching Reactor for MXene synthesis (acidic etching of MAX-phase powders), productivity up to 100 g per batch

    Our Ukrainian partner Materials Research Centre(MRC) offers manufacturing of Etching Reactor for MXene synthesis.

    Our partners from MRC (Kiev, Ukraine) design and manufacture laboratory reactors for stable MXene synthesis with controlled synthesis parameters, that allows to obtain up to relatively big quantity of MXene per batch ( up to 20-100g)

    Laboratory etching reactor for MXene synthesis, 2d carbides

    MRC mission is technology development, design and manufacturing of specialized laboratory equipment for different research needs. Our staff includes engineers trained in design, manufacturing, as well as nanotechnology, chemistry, electrochemistry, and materials science. We can help you to develop solutions for your needs within a wide range of materials and equipment for their manufacturing.

    ETCHING REACTOR FOR ACID ETCHING OF MAX-PHASE POWDERS, PRODUCTIVITY  UP to 100 g / DAY

    While most nanomaterials are only available in “nano” quantities, research team of professor Yury Gogotsi  in Drexel Nanomaterials Institute, Drexel Universuty (USA)  can make in their lab as much as 100 grams of MXene at a time, using a reactor developed with the Materials Research Center in Ukraine.

    The reactor with controlled feed rate and temperature allows rapid optimization of processing for your specific needs, and our engineering and sales team is always available to answer your questions.

    Etching reactor with computer control system has the following advantages:

    - automatically controlled cooling system for keeping stable temperature

    - additional computer recording and displaying the temperature curves of the etching process

    - computer control system for adjusting the rate of material feeding and mixing

    - possibility to connect the supply of neutral gases through the process

    - possibility to connect two monitors for operating and displaying of process parameters

    - possibility to connect the control unit to laboratory/institutional computer network, monitor and operate the process parameters though intranet/internet remote computer access

     Operation

    Solution for MAX-phase for etching is poured into reactor and hermetically closed by a cover, which enables a controlled and safe removal of hydrogen.

    MAX-phase feeding is done at a constant rate.  To prevent deposition of material, the solution is constantly mixed. Chemical reaction of MAX-phase etching is exothermic. A water-cooled shell and feeder for material supply are designed for the temperature control.

    MAX-phase etching is done following, for example, the reaction:

    Ti3AlC2 + 3HF + 2H2O = AlF3 + 5/2H2 + Ti3C2(ОН)2

    Hydrogen that is formed during the etching process flows into the discharge system for further utilization or is discharged. After etching, the solution is discharged for product purification from reaction products and other impurities.

     MRC offers:

    MXene technology development

    Flexible engineering design

    Customized manufacturing tailored to meet your needs

    MRC encourage you to learn more about the exciting possibilities we can offer you, and we look forward to partnering with you to improve your material's synthesis and manufacturing.

    Read more about the MXene synthesis technology in our publication:

    C. E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu, S. Uzun, V. Balitskiy, V. Zahorodna, O. Gogotsi, and Y. Gogotsi, Scalable Synthesis of Ti3C2Tx MXene. Advanced Engineering Materials 22, 1901241(2020) https://doi.org/10.1002/adem.201901241

    To buy high quality MXenes or MAX phases from reliable MXene supplier for research needs and for further information and detailes about ordering Etching Reactor for MXene synthesis please contact us at This email address is being protected from spambots. You need JavaScript enabled to view it.  or our partners at This email address is being protected from spambots. You need JavaScript enabled to view it.

    To get a quota with price on MXene synthesis or price on MAX phase powders please contact us at This email address is being protected from spambots. You need JavaScript enabled to view it.

     

     

     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
  • MAX-phases and MXene synthesis for research purposes

     

    Carbon-Ukraine provides experimental synthesis of MXenes Ti2C and Ti3C2 and MAX phases Ti3AlC2, Ti2AlC, V2AlC, Mo3AlC2, and others.

    Carbon-Ukraine is engaged in experimental synthesis and customized manufacturing of  various materials for scientific research needs. We synthesized MAX-phase and MXene materials for more than 200 universities, research laboratories and  companies from different countries within joint R&D projects and customized orders.

    MAX-Phases

    Our MAX-phase materials have specific composition intended for obtaining MXene. 

    Available particle size:  ≤ 200, ≤100, ≤ 40 microns or bulk material. MAX-phases solid samples or targets are lso available. 

    MXenes 

    MXene materials can be produced and supplied in the following forms:

    • MXene paste (Ti3C2 aqueous solutions or in organic solvents)
    • Powder with a particle size distribution range from hundreds of nm up to tens of µm
    • Thin film deposited on a substrate
    • Freestanding film (3-100 microns)
    • Colloidal solution of delaminated single-layer MXene sheets 
    • Freestanding cold-pressed discs

    MXene Carbon-Ukraine

    Read more about the upscaled MXene synthesis technology in our recent collaborative article with Nanomaterials Group from Drexel University:

    C. E. Shuck, A. Sarycheva, M. Anayee, A. Levitt, Y. Zhu, S. Uzun, V. Balitskiy, V. Zahorodna, O. Gogotsi, and Y. Gogotsi, Scalable Synthesis of Ti3C2Tx MXene. Advanced Engineering Materials 22, 1901241(2020) https://doi.org/10.1002/adem.201901241

    Our Ukrainian partner Materials Resaerch Centre (MRC) offers manufacturing of Etching Reactor for MXene synthesis.

    To get a quota with a price on MXene or MAX phase synthesis please contact us at This email address is being protected from spambots. You need JavaScript enabled to view it.