DETERMINING THE STRENGTH OF REFRACTORIES
WITH ACCOUNT TAKEN OF THE TRUE RELATION
BETWEEN THE STRESS AND DEFORMATION
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The data about the behavior of a material under a load required [11 for assessing its thermal strength
were obtained in flexural tests on a modified RM-101 tensile testing machine which was equipped with a re-
verser 1 (Fig, 1) with load-forming supports (Fig. 2; a = 22 min, L. = 89,2 mm). The force applied to the
specimen was measured with a ring dynamometer 2 provided with a 1-IGM-type indicator 3 giving readings
in microns (see Fig. 1), The readings were recorded by means of a tensoresistor 4 bonded to an elastic
element and connected over a strain-gage amplifier 5 with two-coordinate PDS-012M-type potentiometers
6 which were used for recording the deformation diagram.

The deflection of the specimen was measured with an extensometer 7 the response element of which
is a 6MKh1S mechanotron with a maximum rod travel of 200 u [21,

The deformation was recorded with a 2PKP-10-100GB-type tensoresistor 8 bonded to the surface of
the specimen. The measurements were repeated in order to render them more reliable,

The investigation was carried out with several refractories of substantially dissimilar compositions
(Table 1),

The tests yielded the deformation diagrams of all materials concerned in the coordinates T = f(g),
Typical diagrams of the materials are shown in Fig, 3 and the limiting deformations are given in Table 2,
The diagrams in Fig, 3 are characterized by differences in the relation between the force and the deforma-
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Fig. 1. Apparatus for strength measurements,
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TABLE 1, The Characteristics of the Specimens

= & 19 | Average
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& < a % = B&. | mm
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TABLE 2, The Mechanical Characteristics of the Materials
. Limiting deformation, Pé;g‘ll:te Elafu'c Fodulus, Measure of
Specimen | rel, unifs strength kg/ cm britileness
No. in tension in Compres=| oy p, ] in,tensj,gn in COm pres- X
st.104 sion € - 10 kg/ om? &;10 sione ,+ 10
1 4,75 4,75 1916 4,05 4,05 1,0
2 2,65 2,60 615 2,64 2,64 0,85
3 9,58 7,35 470 0,94* 1,21* 0,40
4 3,20 2,49 31,5 0,19* 0,24 0,38

*In Fig. 4 the difference in the moduli is not discernible,

tion of the material in the extension and compression

zones of the specimen, In the case of materials show-
ing nonlinearity in the deformation diagrams residual

deformation develops even at loads below the limiting

ones,

Some workers [3-5, etc,] have already drawn
attention to the stiffness of brittle materials at normal
and notably at high temperatures. According to some
published results [4, 51, the disregard of nonlinearity
when interpreting the diagrams results in significant
errors in the calculation of the strength, In some
cases [4, 5, etc,] the workers concerned studied ma- -
terials which deform nonlinearly but failed to take
account of the fact that for a brittle material the resistance to extension may differ from the resistance to
compression,

Fig, 2. Schematic presentation of the load appli-
cation on the specimen. The neutral plane of the
beam is shown by the broken line,

For the evaluation of the results obtained in the present investigation the writers developed a proce-
dure in which account is taken of both, the nonlinearity of the deformation diagrams and the difference in
the resistance to extension and compression, The procedure is based on the principle {6, p. 4021 of plot-
ting the stress—strain curve on the basis of the experimentally determined relation between the bending
moment and the deformation of the outer fibres of the specimen,

Consider the equations of equilibrium of a beam:

%c

[ 6@ bdz=0, 1y
#
2
G (?)zbdz = M, ;
z{ {2}

where M = Fa is the bending moment, kg -cm; z is a coordinate which is measured from the neutral plane
of the specimen, cm,
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Fig, 3. Original diagrams of the deformation of the spécimens in the coordinates
force F—deformation £: a-d) for specimens Nos, 1-4 respectively,

Fig. 4. Deformation diagrams of the refractories in the coordinates ultimate strength
o—deformation £: a-d) for specimens Nos, 1-4 respectively,

Here and elsewhere the subscripts t and ¢ denote quantities which relate to the extended and com-
pressed fibres of the specimen respectively., The remaining notation is given in Fig. 2, Assuming that the
hypothesis of plane sections is valid in the deformation of the specimen it follows that

&= z/p, (3)
where p is the radius of the curvature of the neutral plane of the beam, cm,

Let the variable z in Eq, (1) and (2) be substituted by £ in accordance with Nadai's method [6] followed

by the differentiation of both equations intermsof &y + £,, Subseguent manipulations will give the equatijons
which define the stress in the outer fibres:

4

(5)

where £m = (&t + €¢)/ 2 is the mean deformation of the specimen, and the prime denotes the derivative in
terms of the force (e.g., &'t = de/dF).

Using Eq, (4), the tensile deformation diagram of the specimen can be plotted from the experimental
curves of F = F(g¢) and F(gs) for an arbitrary relation between the stress and deformation, The peak
stress in the curve of the tensile deformation will represent the bending strength d'u.b of the material,

The results of the calculation of the ultimate bending strength 0y p Of the materials concerned here
are given in Table 2, The calculations from Eq, (5) only give part of the diagram of the deformation by
compression since in the zone of extension the destruction of the specimen sets in long before the deforma-
tion of the compressed fibres reaches limiting values so that the quantity Tu.c is not of interest.

The deformation diagrams plotted as ¢ = f(¢) from the function F = F(g) in Fig, 3 is shown in Fig, 4,
Note that the diagrams in Fig, 4 represent four types of deformation diagrams characteristic for brittle
materials [7], The diagram in Fig, 4a, for example, is of type I because the stress—deformation function
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TABLE 3, Resulis of the Bending Strength Calculations

Relative error, Jo

g ~
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ch.. D= X100 X100 %100

i 1916 1916 1916 1916 0 0 0

2 615 631 646 649 2,6 5,0 5,5

3 | 470 576 595 671 21,2 26,1 42,7

4 31 40 41 46 27 31 47

TABLE 4, Results of the Calcula- is linear; the curve in Fig. 4b has a linear section and represents

tions of the Elastic Modulus, kg/cm2 type II; the curve in Fig, 4c is of type III since it contains a linear
section and the tangent at its final point is near-parallel to the
1 deformation axis; the diagram in Fig. 4d represents type IV be-

= cause it is nonlinear even at very small loads. These findings

g suggest that the procedure used here should be suitable for most
refractories tested at any given temperature.

Specimen
No,

; The elastic modulus of the materials is determined from the
‘10 tangent of the angle of the tangent to the deformation curve in the
coordinates o = f(£) at near-zero deformation. Differentiation of
Eq. (4) for & = 0 gives the following equation for the extensions:

dot . a d}/ L oemy [ a' dF 3 e
Epm— = — —l [F o —. == ! e 6
T der b2 dFU T e sm) { + )]dst bk (e ° )

D B =

&y

Similarly for the compression:

Eoo22 *m M

To evaluate this procedure and check the precision of the measurements, a comparison was made be~
tween the elastic moduli determined for given spemmens by the static and dynamic methods. For steel
grade St.3 the mean values are Egt = 2.08 - 10° kg/ cm and Egyp = 2.09° 10 kg/ cm?, and for material No. 1
Egt = 4.05+10° kg/ cm” and Edyn = 4.00" 108 kg/cm’. The elastic moduli of the matemals concerned here
are given in Table 2.

The equations used in earlier research for evaluating the results of bending tests can be easily de-
rived from Eqs. {4), (6}, and (7), Disregarding the difference between the tensile and compression deform-
ation of the materials, i.e., assuming & = €5 = &, the following equation can be derived from Eq, (4):

20 gmqm dF
on = WZ(F+ —2--—(§> . (8

This equation was formulated by Nadai [6] and used by Passmore et al. [4] and Canon et al, {5]. The equa-
tion of the elastic modulus is then written as follows:

3o _dF
EN=%m @y (9)

Disregarding the nonlinearity of the deformation diagrams but assuming that the material resists ex~
tension and compression in different ways, then £t = €¢/F and &', = £,/F, and from Eq. (4)

which is the equation formulated by Duckworth [8],
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Assuming the material to be linearly elastic, i.e., idealizing its deformation process as is the prac-
tice in textbooks on the strength of materials [9], equations (4) and (6) will give the equations used in en-
gineering problems to calculate the limiting stresses:

3a

and elastic modulus:
E 3a F
Lim ™= bpE e an

A comparison follows of the results obtained from the various approaches to the problems of deter-
mining the strength of the materials. The diagrams in Fig, 3 show that all curves of F = F(&4) and F =
F(eo) are convex in the upward direction, It follows that

dF i_ dF _ F
det “Seg and de¢ T 8¢ 7

Using these expressions, it will be found from Eq. (8) and (10) that

%a( em dF \ %al_  em F)
'°N=Eﬁ( : T'—de—;)<m(”“z ‘&)= Otims

where oN = 03, only for linearly elastic equal and dissimilar tensile and compression deformations, The
diagrams in Fig, 3 show, moreover, that the F = F(et) curves lie to the right of those for F = F(g,), i.e.,

a

e d
der_ dec

F= dF 1

I

These quantities are equal only for a material with identical curves of deformation by extension and com-
pression,

In that case, according to Eq. (4) and (8)

a em dF 3'0' 2a em dF
“u.t=;f§(‘°+ T dom )(H:r <P+ 55 o) = o

i.e., the quantities oy ¢, ON, and o5y, lie in the descending order as follows:

lim=0ny= Ot

These findings were confirmed by the calculation results in Table 3 which shows the errors in the
results obtained with the various equations for calculating the ultimate strength.

A comparison of Eq. (6), (7), (9), and (10) for the elastic moduli shows* that

wE

Ec EENEEt >Emt and EN;EII int?

These relations are illustrated by the results of ealculations of the elastic modulus in Table 4,

The strength of a material can be determined not only from the force—deformation diagrams but also
from the diagram of the deflection of the specimen vs the force, Since in pure bending the deflection of the
beam between the outer supports is constant, according to the differential equation of the line of deflection

[9, p. 124]:

418
m =T =27 - 12

This equation does not depend on the shape of the deformation curve of the material. Using Eq. (12), Eq.

* Eint is the intersecting modulus, a quantity often used for practical purposes and equal to the ratio of the
strength to the deformation of the material, i.e., E{np = 6y, t/€¢ in the present case.
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(8) can be reformulated as follows:
2a( 8 dF
O = bhﬂ(F + ‘2—'&?)- (13)

The curves F = F(5) can be used in combination with Egs, (12) and (13) for plotting the deformation
of the material in terms of oy = f(eq;). Note that in the general case the function ¥ = F (), where the de-~
flection 0y of the specimen is measured from the level of the outer supports, cannot be used for plotting

the deformation diagram oy = f(g,,) because the relation between 64 and &4, depends on the shape of the
deformation curve,

In the present writers' approach to the evaluation of the results of the experiment it is possible to
calculate the magnitude of the measure of brittleness of the material [1] which equals the ratio of the brittle
energy B of the specimen at the instant of destruction to the energy U expended on its deformation:

¥ = B/U.

This quantity can be used for assessing the behavior of the material under mechanical and thermal
loads, For the present case, the brittleness values are determined from the equation

2
Syt
L= Eq%- ’

2E¢ jctdst
°

and are given in Table 2. The data in Tables 2 and 3 show that the discrepancy between o]jm and the mea-
sured ultimate strength of the material increases as the measure of brittleness X decreases, It follows
that information relating to the strength of a material should be supplemented with the X values which ex~
press the deformation characteristics of the material under a load.

Tn tests based on the principle of three-point deflection, the stress conditions of the beam depend not
only on the bending moment but also on the transverse force, Moreover, as already stated, the relation be-
tween the deformation and deflection of the specimen depends on the shape of the deformation curve so that
the results of three-point bending tests cannot be used for a precise determination of the strength of mater-
ials,

In spite of the relatively simple structure of Eqs, (4)-(9), the relevant calculations entail certain dif-
ficulties owing to the necessity to calculate the derivatives de;/dF and deo/dF precisely because the analyt-
ical equations for the functions F = F(g¢) and F = F(g.) are usually unknown and the derivatives must be
determined numerically. Numerical differentiation is unsuitable [10, p, 152] because a small error in the
determination of the equation to be differentiated influences the value of its derivative to a significant ex~
tent, The present writers therefore used the method developed by Dolgopolova and Ivanov [11] and plotted
the curve ¥ (F) which not only approached the experimental curve £((Fy, i.e.

Fim
{ (er — EydF <2,
.

but was possibly also smoother, i.e,, it gave a minimized functional

F
[61) (ep) =

m
(E;)Qdf‘,

Oty =

where Flim is the limiting force, kg; 7 is the required approximation of the experimental curve,
In this case e} will differ only marginally from the required derivative, The derivative &' (F) is cal~
culated gimilarly, The algorithm for constructing the diagrams was programmed for a Mir-2 computer,
CONCLUSIONS

A procedure was developed and tested for evaluating the results of bending tests, In this procedure
account is taken of the nonlinearity of the deformation diagrams for the material and of the difference in
the resistance of brittle materials to extension and compression,
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Using this procedure, it is possible to determine the true ultimate strength, the static modulus of
elasticity, the limiting deformation, and the degree of brittleness of refractories from a single pure-bending
test; the result being that tests can be more efficient and knowledge about the behavior of the material will
be greatly increased so that it will be possihle to arrive at a more accurate assessmeent of the service
efficiency of the material when subjected to thermal effects.

The quantity }jy,, Which in practice is usually interpreted as the ultimate bending strength, corre-
sponds to the true ultimate strength only for a linearly elastic material. For materials with nonlinear
deformation diagrams, which include the majority of refractories, the use of op;y, results in overstated
strength values which is quite inadmissible for a material to be used in design analyses and estimates.

The term "ultimate bending strength” as a description of the quantity a1y, should obviously be replaced by,
for example, the term "conditional ultimate bending strength" (by analogy with the American term "modulus
of rupture").

Data about the strength of materials should be supplemented with a quantity which characterizes the
deformation curve, &.g., the degree of brittleness X.
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